A Modified Tri-Exponential Model for Multi-b-value Diffusion-Weighted Imaging: A Method to Detect the Strictly Diffusion-Limited Compartment in Brain
نویسندگان
چکیده
Purpose: To present a new modified tri-exponential model for diffusion-weighted imaging (DWI) to detect the strictly diffusion-limited compartment, and to compare it with the conventional bi- and tri-exponential models. Methods: Multi-b-value diffusion-weighted imaging (DWI) with 17 b-values up to 8,000 s/mm2 were performed on six volunteers. The corrected Akaike information criterions (AICc) and squared predicted errors (SPE) were calculated to compare these three models. Results: The mean f0 values were ranging 11.9-18.7% in white matter ROIs and 1.2-2.7% in gray matter ROIs. In all white matter ROIs: the AICcs of the modified tri-exponential model were the lowest (p < 0.05 for five ROIs), indicating the new model has the best fit among these models; the SPEs of the bi-exponential model were the highest (p < 0.05), suggesting the bi-exponential model is unable to predict the signal intensity at ultra-high b-value. The mean ADCvery-slow values were extremely low in white matter (1-7 × 10-6 mm2/s), but not in gray matter (251-445 × 10-6 mm2/s), indicating that the conventional tri-exponential model fails to represent a special compartment. Conclusions: The strictly diffusion-limited compartment may be an important component in white matter. The new model fits better than the other two models, and may provide additional information.
منابع مشابه
Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging
Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...
متن کاملEvaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors
Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method.Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy ...
متن کاملThe Utility of Diffusion Weighted Magnetic Resonance Imaging in Detection of the Origin of the Brain Solid Metastatic Tumors
Background: Early diagnosis of brain tumors has significant effect on the treatment process. Brain metastatic tumors are usually diagnosed following the neurological symptoms in patients or incidentally after Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI) requests of the brain. Objectives: Implementation of a new method for being informed about the origin of brain tumors...
متن کاملMulti-Component Apparent Diffusion Coefficients in the Rabbit VX2 Tumor Model
J. Deng, T. K. Rhee, G. E. Woloschak, T. Paunesku, R. A. Omary, A. C. Larson Department of Radiology, Northwestern University, Chicago, IL, United States, Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States Introduction: Diffusion-weighted magnetic resonance imaging (DW-MRI) techniques permit quantitative in vivo measurement of local water diffusion charact...
متن کاملSignal Intensity of High B-value Diffusion-weighted Imaging for the Detection of Prostate Cancer
Background: Diffusion-weighted imaging (DWI) is a main component of multiparametric MRI for prostate cancer detection. Recently, high b value DWI has gained more attention because of its capability for tumor characterization. Objective: To assess based on histopathological findings of transrectal ultrasound (TRUS)-guided prostate biopsy as a reference, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2018